Quiz 1

[1] If $A=\left[\begin{array}{cc}2 & 1 \\ -1 & 0 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 2 & -3 \\ 0 & 2\end{array}\right]$
Find, if possible, $\mathrm{A}+\mathrm{B}, \mathrm{A} . \mathrm{B}, \mathrm{A} . \mathrm{A}, \mathrm{A}^{\prime} \mathrm{A}^{\prime}, \mathrm{A}^{\prime} . \mathrm{B},|\mathrm{A}|$ and $\left|\mathrm{A}^{\prime} \mathrm{A}^{`}\right|$.
[2] Find the eigenvalues and the eigenvectors of : $A=\left[\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right]$

Quiz 2

[1]Determine the type of solution of the linear systems :
(a) $x-y=3, \quad-2 x+2 y=5$.
(b) $\mathrm{x}-\mathrm{y}+\mathrm{z}=3, \quad 3 \mathrm{x}-2 \mathrm{y}-\mathrm{z}=-1, \quad-2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=4$.
[2]If a drug exists in three dosage forms :
The first of concentration $1 \mathrm{mg} /$ tablet, The second of concentration $2 \mathrm{mg} /$ tablet,
The third of concentration $4 \mathrm{mg} /$ tablet. If the pharmacist wanted to produce 12 tablets of concentration $3 \mathrm{mg} /$ tablet by mixing whole tablets. Find two possible solutions.

Quiz 3

(1)Find the maximum and minimum points of the functions:
(a) $f(x)=x-2 \ln x$
(b) $f(x)=x^{3}+2$
(2)Find the integrals:
(i) $\int\left(x^{3}+3^{x}\right) d x$
(ii) $\int\left(\frac{1}{x^{3}}+3 \cos x\right) d x$
(iii) $\int\left(\frac{2^{x}}{3^{x}}-2 \sin x\right) d x$
(iv) $\int\left(x^{3}+2\right)^{2} d x$
(v) $\int 2 x .\left(3+x^{2}\right)^{5} d x$
(vi) $\int \frac{x+1}{x^{2}-3 x+2} d x$

